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m
Fig. 3. Two-port FET oscillator circuit.

Verification for a Two-Port Loaded by Two Impedances

In Fig. 3, for the active device:

[1
[s]= ;“ ~

21

and for the embedding circuit:

The oscillation condition from (7) is

Ikq=fs][s’]-[1]1

S,,r’, -l s,2r2——
sz,r, szzrz– 1 =0’

which gives

(s,,r, – l)(s,,r, –l)–sl,sz,r,rz =0.

(14)

(15)

(16)

(17)

This equation results in the following two well-known condi-
tions [1]:

s + s12s21r2= +
11 l–s22r2 ,

s12s21rl_ 1
’22+ l–sllrl ‘~.

Three-Port Loaded by Three Impedances

In Fig. 4 for [M]= [S][ S’] – [1] to be singular, we have

s,lr, –l s,2r2 s,3r3
szlrl s22r2 – I s23r3 =0

s~lrl s~2r2 s~~r~ – 1

or

s,2s2,r,r2 s,3s3,r,r3
(1–s,,r,)(l–s22r2) + (1–s,,r,)(l–s,,r,)

(18)

(19)

(20)

S23s32r2r3 r,r2r3(s,2s23s3,+s2,s32s,3)
+ (1-s22r2)(l-s33r3)+ (1-s,, r,)(l-s22r2)(l-s33 r3)

=1.

(2 )
This is the same relation as is obtained by calculating in the

classical way at each of the three-ports the following relation:

s:,r, =sfirz=sfirq =1

where S: is the modified reflection coefficient at port 1 with
ports 2 and 3 loaded by impedances corresponding to refl. coeff.
r2 and r~.

It may be noted that though in both the above examples the
transfer scattering parameters of the embedding network have
been taken as zero, the approach presented is equally applicable

-Q=
I
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Fig. 4. Three-port FET oscillator circuit.

to analyse complex embedding networks with nonzero transfer

scattering parameters, for example a YIG sphere coupled to both

gate and source of an FET [4].
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A Simple Numerical Method for the Cutoff Frequency

of a Single-Mode Fiber with an Arbitrary

Index-Profile

ANURAG SHARMA AND A. K. GHATAK

A bstract— A simple numericaf method for calculating the cutoff

frequency of single-mode operation in optical fibers with an arbitrary

index-profile is presented. The method does not involve auy approximation

other than the scafar approximation and is applicable even to numericaf

data from index-profile measurements. The calculations are simple and can

be carried out even on a programmable calculator.

I. INTRODUCTION

The cutoff frequency of single-mode operation in optical fibers

is an important parameter since it defines the upper limit on the

diameter of a single-mode fiber. However, the cutoff condition

cannot be obtained analytically except in the case of step-index

[1], parabolic-index [2], and W type fibers [3], [4] and, as such,

various approximate [5]– [7] and numerical [8]– [13] methods have

been developed to calculate cutoff frequencies of various other

types of graded-index fibers. Of the approximate methods, the

variational method [5] gives only an accuracy of the order of 1

percent in the calculation of the cutoff frequency, The perturba-

tion method [6] gives good results only for profiles which are

nearly parabolic and involves the evaluation of higher transcen-

dental functions such as confluent hypergeometric function [15]
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besides the numerical evaluation of integrals. The integral equa-
tion method [7] involves successive approximations which require
an initial approximation of the field and numerical evaluation of
double integrals at each stage.

On the other hand, the direct numerical methods either are
highly involved and time consuming because of intensive compu-
tations or are applicable to a limited class of index-profiles. For
example, the power-series method [8], [9] is applicable only to the
profiles which can be expressed as a finite power series. Other
numerical methods [ 10]– [ 13] involving the “staircase approxima
tion,” [10], [1 1], the finite element technique [13], and power
series expansion [12] require extensive computation and large
data storage and thus, are suitable only for large computers.

We have presented here a simple numericaf method which can
be applied to any arbitrary-index profile and even to numerical
data from the index-profile measurements and does not involve
any approximation other than the scalar approximation. The
computation required can be carried out even on a programmable
calculator.

II. METHOD

The index profile of a graded-index fiber can, in general, be

written as

n2(R)=n; –A(n; –n; )~(R), R<l

=n~, R>l (1)

where R= r/a, a being the radius of the core, n, is the maximum

refractive-index in the core, n z the refractive-index of the clad-

ding, A determines the refractive-index jump at the core-cladding

interface and O<~( R ) <1 defines the shape of the profile in the

core. The modal field, Y(R), of the first higher mode (TEO1

mode), in the core, is given by the following scalar wave equa-

tion:

d2*

[ 1
~+~~+ U2– V2Af(R)–+ I?(R)=O,

and the field, in the cladding, is given by

V(R)= K,(WR), R>l

where K. is the modified Hankel function [15] and

( 2)
Vz=kzaz ~f–nz

UZ=(k2n~–~2)az

w2=v2–fJ2

R<l

(2)

(3)

(4)

~ is the propagation constant and k is the free-space wavenum-

ber. The field, V(R), satisfies the following boundary conditions

(see Appendix):

V(o)=o (5)

(6)

At cutoff ~ e kn2 so that W+ O and U+ V and (2) for the field

T(R) becomes

where VC is the normalized cutoff frequency. The boundary

condition (6) now takes the form

1 d?——
V dR ~.l

=–1. (8)

The second-order differential equation (7) can be reduced to a

first-order differential equation by making the following substitu-

tion:

Thus (7) can be written as

and boundary conditions (5) and (8) as

(9)

l–Af(R)] (lo)

G(0)= eoand G(l)= -1. (11)

In order to avoid the boundary condition G(0)= co, we define a

new function F= 1/G so that

F(0) =0. (12)

The function F(R) satisfies the following equation:

~=1+~–~+F2V:[l –Af(R)]. (13)

Further, it maybe noted that at R=O the right-hand side (RHS)

of (13) is indeterminate and one has to take its limiting value. It

can be easily shown that (see Appendix)

L&&. (14)

Thus the problem of finding the cutoff freauency has reduced

to solving the transcendental equation

s(~)=– 1

where

~(K)=G(R)l~=l

and G(R)I, =, for a particular value of K

. .

(15)

(15a)

is obtained by solvinz

(10) ~d “(13) “using & appropriate num&icaf method, ”e.g., th;

fourth order Runge–Kutta method [16]. To begin, in the region

of R C=O, (13) is used with appropriate conditions, viz., (12) and

(14), because, at R=O, G+ w. As soon as F exceeds unity one

makes a switch over to (10)’ with the condition that G= 1/F at

the corresponding value of R and calculates the G(R) at R= 1

which gives the LHS of ( 15).

III. NUMERICAL EXAMPLES AND DISCUSSION

We present here some numerical examples in order to show the

effectiveness of our method. All the calculations have been car-

ried out on a microcomputer (ECIL Micro 78, based on INTEL

8080 microprocessor) using PL/S programming language.2

We first consider a parabolic-index fiber. The cutoff condition,

in this case, can be obtained analytically and is given by [2]

where M( a, b, z ) is the confluent hypergeometnc function [15].

We have compared the computation time required to solve (16)

with the time required to solve (15) using the same transcen-

dental-equation solving routine. Using (16) it takes about 65 s to

obtain the cutoff frequency with an accuracy of 0.001 percent

1The switch over is necessary because at some value of R in the rauge O to 1,
F+ co and G+ O (wluch corresponds to the maximum vafue of the modal field
m the core). The switch over is made around F= 1 in order to minimize the
truncation error in the computation of G= 1/F,

2PL/S, implemented by SOFTEK Private, Ltd., is a modified version of
PL/1.
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Fig. 1. The cutoff frequency Vc versus the normalized width of the Lorentziau
dip w/a for different values of A for a step-index fiber.
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Fig. 2. A typical experimental refractive-index profde (redrawn from fig. 4
of [ 14]).

while using (15) it takes about 94 s. Thus although our method is

a numerical method, the time taken is of the same order as that

required to solve the analytical transcendental equation. Further,

analytical expressions for cutoff condition are possible only for a

few index profiles such as step-index [ ~( It) = O] and parabolic-

index [~(R) = R2 ], whereas our method is applicable to any

arbitrary index-profile. It may be mentioned here that the power

series method [8], [9] is faster than our method but is applicable

only to those profiles which can be expressed as a finite power

series, e.g., it is applicable only to those a-profiles for which a is

an integer.

Next, we present the results of two calculations to show the

applicability of our method to any arbitrary– analytical or

numeric& profile. First, we consider an analytical profile— a

step-index fiber with a Lorentz.ian dip, for which

~(R)= (w/a)’(l-R’)

(w/a)2+R2
(17)

where w is the width of the dip. In Fig. 1, we have plotted the

cutoff frequency VC, as a function of the normalized width, w\a,
for different vrdues of A. Our results for A= 1 agree very well

wi~ those obtained by using the more cumbersome integral-

equation method [7].

Finally, we consider a typical experimentally measured profile

shown in Fig. 2. The R-axis was divided into 70 equal parts and

the corresponding profile values were taken as the profile data.

The cutoff frequency was calculated to be VC= 2.2036.

Although, for the above calculations we have used a microcom-

puter, these calculations can be carried out even on a program-

mable calculator (with about 1000 programming steps).

IV. CONCLUSION

In this paper, we have described a simple and exact numerical

method to calculate the cutoff frequency of the first higher mode

which determines the single-mode limit in optical fibers. The

method is applicable to arbitrary index profiles and even to

numerical data from index profile measurements, The method

does not involve the computation of any special or elementary

transcendental function and is suitable even for a programmable

calculator of about 1000 programming steps.

APPENDIX

BOUNDARY CONDITIONS AT R =0

The boundary conditions on Y and its derivatives at R= O can
be easily derived by expanding q? about R = O as follows:

~=o

where

_ 1 dnv

an — Z dRn ~=0

(Al)

(A.2)

The wave equation can be written as

();& R% –~ +P(R)V(R)=O (A.3)

where m=0,1,2, . . . is the azimuthal symmetry number and

P(R) = U’ – V* A~(R). Substituting (A. 1) in (A.3), we get

m’ao +l–I?P w—— ~al+ ~ [{(n+ 2)2–m2}an+2
R’ ~=o

1+P(R)aH R“=O.

(A.4)

In order that the field q? be finite at R= O, the following condi-

tions must be satisfied:

a. =0, form#O (A.5)

al =0, form+l (A,6)

and

[(n+2)2-m2]an+2 +P(R)aH=0, (A.7)

The above conditions would require

g#o, forp=m, m+2, m+4,...

= o, otherwise. (A.8)

Thus for m= 1, we have

*(0)=0 (A.9)

which justifies (5). Further,

dV d2~
~ ,=o#Oand — =0, form=l

dR2 ~=o
(A.1O)

which on substitution in the following equation:
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give

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

dz~~f l–lJ_
/(–)

~q 2

—.

dR dR2 dR
(All)

(14).
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Mlcrostrip Dispersion in a Wide-Frequency Range

EIKICHI YAMASHITA, KAZUHIKO ATSUKI, AND

TETSUYA HIRAHATA

A bstract— The dispersion property of microstrip lines was measured in a

frequency range from 2 to 50 GHz and compared with that estimated by an

approximate formnla iu a previous paper.

I. INTRODUCTION

The frequency dependence of wave velocity in a transmission

line is called dispersion property, and is an important quantity

when the line is used in a wide frequency range. The ratio of the

propagation constant of the transmission line to that of free

space ~//30 is also used as a quantity to express the dispersion

Manuscript received September 5, 1980; revised December 24, 1980. This
work was supported in part by a Grant in aid for Scientific Research on
Microwave aud Opticaf Planar Circuits.
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Fig. 1. Experimental setup for measuring the dispersion property of micro-
strip lines.

property. The dispersion property can be exactly analyzed by

solving Maxwell’s equations as a boundary value problem. The

integral equation method [1] and the mode-matching method [2],

among others, showed good agreement in the results of the

analysis of microstnp dispersion. However, an approximate for-

mula of the microstnp dispersion is needed in desk calculations

and the CAD of microwave integrated circuits. Though a few

approximate formulas have been reported in the past based on

some physical considerations and experimental data for frequen-

cies up to 12 GHz, [3]–[6], these empirical formulas have had

narrow ranges of applicability. We also derived an approximate

formula of microstrip dispersion [7] from the numerical result of

the integral equation method [1],

This paper describes the experimentally measured dispersion

property of some microstrip lines in a wide-frequency range

compared with that estimated by the above approximate formula.

II. APPROXIMATE DISPERSION FORMULA

The approximate formula of microstrip dispersion given in a

previous paper [7] is

where

PTEM

A.

h

w
C*

~_J-* jjTEM

Po – 1+4F-’5 + Bo
(1)

F=*[o.5+{l+210g10(l+;)~](,)

the propagation constant derived with the quasi-TEM

wave approximation,

wavelength in vacuum,

the height of the substrate,

the width of the strip conductor,

the dielectric constant of the substrate.

The applicable ranges of this formula are

2<c*<16

o.06<w/h<16

0.1 GHz <~< 100 GHz,.

Though the lowest usable frequency is limited by 0.1 GHz, the

propagation constant for frequencies less than 0.1 GHz has been

already given as 13T~~.

III. EXPERIMENTALRESULTS

The microstnp dispersion was measured with a resonance

method. Fig. 1 shows an experimental setup for measuring the

guide wavelength A and the free space wavelength AO, The
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