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Fig. 3. Two-port FET oscillator circuit.

Verification for a Two-Port Loaded by Two Impedances
In Fig, 3, for the active device:

s 3 a9

and for the embedding circuit:

oo 1)

The oscillation condition from (7) is
|M|=|[s1[s'1-[1]}
_|suTi—1
_’ Saly

(15)

S12F2

S,,T,—1 =0

(16)

which gives
(ST = 1)(8pT, — 1) = 8,8, T T, =0. (17)

This equation results in the following two well-known condi-
tions [1]:
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Three-Port Loaded by Three Impedances
In Fig. 4 for [M]=[S][S']—[1] to be singular, we have
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@n
This is the same relation as is obtained by calculating in the
classical way at each of the three-ports the following relation:

ST =850 =851, =1

where S{; is the modified reflection coefficient at port 1 with
ports 2 and 3 loaded by impedances corresponding to refl. coeff.
T, and T3.

It may be noted that though in both the above examples the
transfer scattering parameters of the embedding network have
been taken as zero, the approach presented is equally applicable
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Fig. 4. Three-port FET oscillator circuit.

to analyse complex embedding networks with nonzero transfer
scattering parameters, for example a YIG sphere coupled to both
gate and source of an FET [4].
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A Simple Numerical Method for the Cutoff Frequency
of a Single-Mode Fiber with an Arbitrary
Index-Profile

ANURAG SHARMA AND A. K. GHATAK

Abstract— A simple numerical method for calculating the cutoff
frequency of single-mode operation in optical fibers with an arbitrary
index-profile is presented. The method does not involve any approximation
other than the scalar approximation and is applicable even to numerical
data from index-profile measurements. The calculations are simple and can
be carried out even on a programmable calculator.

I. INTRODUCTION

The cutoff frequency of single-mode operation in optical fibers
is an important parameter since it defines the upper limit on the
diameter of a single-mode fiber. However, the cutoff condition
cannot be obtained analytically except in the case of step-index
[1], parabolic-index [2], and W type fibers [3], [4] and, as such,
various approximate [5]-[7] and numerical [8]-[13] methods have
been developed to calculate cutoff frequencies of various other
types of graded-index fibers. Of the approximate methods, the
variational method [5] gives only an accuracy of the order of 1
percent in the calculation of the cutoff frequency. The perturba-
tion method [6] gives good results only for profiles which are
nearly parabolic and involves the evaluation of higher transcen-
dental functions such as confluent hypergeometric function [15]
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besides the numerical evaluation of integrals. The integral equa-
tion method [7] involves successive approximations which require
an initial approximation of the field and numerical evaluation of
double integrals at each stage.

On the other hand, the direct numerical methods either are
highly involved and time consuming because of intensive compu-
tations or are applicable to a limited class of index-profiles. For
example, the power-series method [8], [9] is applicable only to the
profiles which can be expressed as a finite power series. Other
numerical methods [10]-[13] involving the “staircase approxima-
tion,” [10], [11], the finite element technique [13], and power
series expansion [12] require extensive computation and large
data storage and thus, are suitable only for large computers.

We have presented here a simple numerical method which can
be applied to any arbitrary-index profile and even to numerical
data from the index-profile measurements and does not involve
any approximation other than the scalar approximation. The
computation required can be carried out even on a programmable
calculator.

II. METHOD

The index profile of a graded-index fiber can, in general, be
written as

nz(R)=n12—A(n12—n§)f(R), R<1

=nZ, R>1

(1)
where R=r/a, a being the radius of the core, n, is the maximum
refractive-index in the core, n, the refractive-index of the clad-
ding, A determines the refractive-index jump at the core-cladding
interface and 0<f(R) <1 defines the shape of the profile in the
core. The modal field, ¥(R), of the first higher mode (TE,
mode), in the core, is given by the following scalar wave equa-
tion:

d’v 1d¥ N 1 _
IR? +R E‘F[U V?Af(R) F ‘I’(R)—O, R<l
)
and the field, in the cladding, is given by
¥Y(R)~K,(WR), R=1 (3)
where K, is the modified Hankel function [15] and
V2:k2a2(n12—n§)
U?=(k’n}—B*)a* (4)

W2 — V2 _ U2
B is the propagation constant and k is the free-space wavenum-
ber. The field, ¥(R), satisfies the following boundary conditions
(see Appendix):

(%)

¥(0)=0
1 d¥ N ©

_ WE(W)
¥ dR |r=1  Ky(W)

At cutoff B— kn, so that W—0 and U-» ¥V and (2) for the field
¥(R) becomes

d*¥Y | 1d¥ ¥
+ = — +VA1-Af(R)]¥~—=0,
dR2 L[ f( )] R2

R dR
where V, is the normalized cutoff frequency. The boundary
condition (6) now takes the form

1 d¥

R<1 (7)

=—1.

¥ dR [g=1 (8)
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The second-order differential equation (7) can be reduced to a
first-order differential equation by making the following substitu-
tion:

_1dy
G(R)= ¥ 4R 9)
Thus (7) can be written as
46 _ 2 G 1 _par
and boundary conditions (5) and (8) as
G(0)=c0 and G(1)=—1. (11)

In order to avoid the boundary condition G(0)= 0, we define a
new function F=1/G so that

F(0)=0. (12)
The function F(R) satisfies the following equation:
dF _ F F* _, ,
R R F+F V2 [1—-Af(R)]. (13)

Further, it may be noted that at R=0 the right-hand side (RHS)
of (13) is indeterminate and one has to take its limiting value. It
can be easily shown that (see Appendix)

. dF _
Am R (14)
Thus the problem of finding the cutoff frequency has reduced

to solving the transcendental equation

S(V)=—1 (15)

where

S(V.)=G(R)|p_, (15a)
and G(R)| z=, for a particular value of ¥, is obtained by solving
(10) and (13) using an appropriate numerical method, e.g., the
fourth order Runge—Kutta method [16]. To begin, in the region
of R~0, (13) is used with appropriate conditions, viz., (12) and
(14), because, at R=0, G— 00. As soon as F exceeds unity one
makes a switch over to (10)' with the condition that G=1/F at
the corresponding value of R and calculates the G(R) at R=1
which gives the LHS of (15).

IIL

We present here some numerical examples in order to show the
effectiveness of our method. All the calculations have been car-
ried out on a microcomputer (ECIL Micro 78, based on INTEL
8080 microprocessor) using PL /S programming language.?

We first consider a parabolic-index fiber. The cutoff condition,
in this case, can be obtained analytically and is given by [2]

NUMERICAL EXAMPLES AND DISCUSSION

V. V. _ Ve Ve
Yo(1= %) ~(a= S ua- £ 2v) a0
where M(a, b, z) is the confluent hypergeometric function [15].
We have compared the computation time required to solve (16)
with the time required to solve (15) using the same transcen-
dental-equation solving routine. Using (16) it takes about 65 s to
obtain the cutoff frequency with an accuracy of 0.001 percent

!'The switch over is necessary because at some value of R in the range 0 to 1,
F—> o0 and G — 0 (which corresponds to the maximum value of the modal ficld
mn the core). The switch over is made around F~1 in order to minimize the
truncation error in the computation of G=1/F.

2PL/S. implemented by SOFTEK Private, Ltd., is a modified version of
PL/I.
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Fig. 2. A typical experimental refractive-index profile (redrawn from fig. 4
of [14]).

while using (15) it takes about 94 s. Thus although our method is
a numerical method, the time taken is of the same order as that
required to solve the analytical transcendental equation. Further,
analytical expressions for cutoff condition are possible only for a
few index profiles such as step-index [ f(R)=0] and parabolic-
index [f(R)=R?], whereas our method is applicable to any
arbitrary index-profile. It may be mentioned here that the power
series method [8], [9] is faster than our method but is applicable
only to those profiles which can be expressed as a finite power
series, e.g., it is applicable only to those a-profiles for which « is
an integer.

Next, we present the results of two calculations to show the
applicability of our method to any arbitrary—analytical or
numerical-profile. First, we consider an analytical profile—a
step-index fiber with a Lorentzian dip, for which

(w/a)’(1-R?)
(w/a)2+R2

f(R)= (17)
where w is the width of the dip. In Fig. 1, we have plotted the
cutoff frequency V,, as a function of the normalized width, w/a,
" for different values of A. Our results for A=1 agree very well
with those obtained by using the more cumbersome integral-
equation method [7].

Finally, we consider a typical experimentally measured profile
shown in Fig. 2. The R-axis was divided into 70 equal parts and
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the corresponding profile values were taken as the profile data.
The cutoff frequency was calculated to be ¥, =2.2036.

Although, for the above calculations we have used a microcom-
puter, these calculations can be carried out even on a program-
mable calculator (with about 1000 programming steps).

IV. CONCLUSION

In this paper, we have described a simple and exact numerical
method to calculate the cutoff frequency of the first higher mode
which determines the single-mode limit in optical fibers. The
method is applicable to arbitrary index profiles and even to
numerical data from index profile measurements. The method
does not involve the computation of any special or elementary
transcendental function and is suitable even for a programmable
calculator of about 1000 programming steps.

APPENDIX
BOUNDARY CONDITIONS AT R=0

The boundary conditions on ¥ and its derivatives at R=0 can
be easily derived by expanding ¥ about R=0 as follows:

¥(R)= 3 a,R"

(A1)
n=0
where
_ 14"y
“W= TR o (A2)
The wave equation can be written as
1 d dv m2¥ _
id_R( ZE)~?—+P(R)?(R)—O (A3)

where m=0,1,2,--- is the azimuthal symmetry number and
P(R)=U?—V?Af(R). Substituting (A.1) in (A.3), we get

m?a 1—-m? ot
- RZO +—pat ngo[{(n+2)2—m2}a,,+2

+P(R)a,| R"=0.
(A4)

In order that the field ¥ be finite at R=0, the following condi-
tions must be satisfied:

a,=0,  for m#0 (A.5)
a,=0, forms~1 (A.6)
and
[(n+2)2—m2]a,,+2 +P(R)a, =0, (A7)
The above conditions would require
ar¥ _
IR? #0, forp=m,m+2,m+4,
=0,  otherwise. (A.8)
Thus for m=1, we have
¥(0)=0 (A.9)
which justifies (5). Further,
avy d*v
—_ 0 and =0, form=1 (A.10
dR R=0# dR2 R=0 orm ( )

which on substitution in the following equation:
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I i 4 (dq' )2 (A.11)

dR dR? dR
give (14).
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Microstrip Dispersion in a Wide-Frequency Range

EIKICHI YAMASHITA, KAZUHIKO ATSUKI, AND
TETSUYA HIRAHATA

Abstract— The dispersion property of microstrip lines was measured in a
frequency range from 2 to 50 GHz and compared with that estimated by an
approximate formula in a previous paper.

I. INTRODUCTION

The frequency dependence of wave velocity in a transmission
line is called dispersion property, and is an important quantity
when the line is used in a wide frequency range. The ratio of the
propagation constant of the transmission line to that of free
space B8/8, is also used as a quantity to express the dispersion
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Fig. 1. Experimental setup for measuring the dispersion property of micro-
strip lines.

property. The dispersion property can be exactly analyzed by
solving Maxwell’s equations as a boundary value problem. The
integral equation method [1] and the mode-matching method [2],
among others, showed good agreement in the results of the
analysis of microstrip dispersion. However, an approximate for-
mula of the microstrip dispersion is needed in desk calculations
and the CAD of microwave integrated circuits. Though a few
approximate formulas have been reported in the past based on
some physical considerations and experimental data for frequen-
cies up to 12 GHz, [3]-[6], these empirical formulas have had
narrow ranges of applicability. We also derived an approximate
formula of microstrip dispersion [7] from the numerical result of
the integral equation method [1].

This paper describes the experimentally measured dispersion
property of some microstrip lines in a wide-frequency range
compared with that estimated by the above approximate formula.

II. APPROXIMATE DISPERSION FORMULA

The approximate formula of microstrip dispersion given in a
previous paper [7] is

Brem
E* —_—
B _ Ve Bo n Brem (1)
Bo  1+4F7'3 Bo
where
_ ah/F=] 2
F=——JL;\:— o.5+{1+2log10(1+%)}] @)
0
Brem  the propagation constant derived with the quasi-TEM
wave approximation,
Ao wavelength in vacuum,
h the height of the substrate,
w the width of the strip conductor,
€* the dielectric constant of the substrate.

The applicable ranges of this formula are
2<<e* <16
0.06<w/h<16
0.1 GHz <f<100 GHz.

Though the lowest usable frequency is limited by 0.1 GHz, the
propagation constant for frequencies less than 0.1 GHz has been
already given as Brgym-

III. EXPERIMENTAL RESULTS

The microstrip dispersion was measured with a resonance
method. Fig. 1 shows an experimental setup for measuring the
guide wavelength A and the free space wavelength A,. The
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